Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
BMC Microbiol ; 24(1): 94, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519882

RESUMEN

BACKGROUND: Cervicovaginal microbiome plays an important role in the persistence of HPV infection and subsequent disease development. However, cervicovaginal microbiota varied cross populations with different habits and regions. Identification of population-specific biomarkers from cervicovaginal microbiota and host metabolome axis may support early detection or surveillance of HPV-induced cervical disease at all sites. Therefore, in the present study, to identify HPV-specific biomarkers, cervicovaginal secretion and serum samples from HPV-infected patients (HPV group, n = 25) and normal controls (normal group, n = 17) in Xichang, China were collected for microbiome (16S rRNA gene sequencing) and metabolome (UHPLC-MS/MS) analysis, respectively. RESULTS: The results showed that key altered metabolites of 9,10-DiHOME, α-linolenic acid, ethylparaben, glycocholic acid, pipecolic acid, and 9,12,13-trihydroxy-10(E),15(Z)-octadecadienoic acid, correlating with Sneathia (Sneathia_amnii), Lactobacillus (Lactobacillus_iners), Atopobium, Mycoplasma, and Gardnerella, may be potential biomarkers of HPV infection. CONCLUSION: The results of current study would help to reveal the association of changes in cervicovaginal microbiota and serum metabolome with HPV infections.


Asunto(s)
Microbiota , Infecciones por Papillomavirus , Femenino , Humanos , Vagina , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Metaboloma , Microbiota/genética , Biomarcadores/metabolismo
2.
Front Immunol ; 15: 1354313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426090

RESUMEN

The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Linfocitos Infiltrantes de Tumor , Neoplasias Hepáticas/patología , Inmunoterapia Adoptiva , Transducción de Señal , Microambiente Tumoral
3.
Biomed Pharmacother ; 173: 116336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412717

RESUMEN

OBJECTIVE: Protein disulfide isomerase A3 (PDIA3) promotes the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum. PDIA3 is overexpressed in most tumors, and it may become a biomarker of cancer prognosis and immunotherapy. Our study aims to detect the expression level of PDIA3 in gastric cancer (GC) and its association with GC development as wells as the underlying mechanisms. METHODS: GC cell lines with PDIA3 knockdown by siRNA, CRISPR-cas9 sgRNAs or a pharmacological inhibitor of LOC14 were prepared and used. PDIA3 knockout GC cells were established by CRISPR-cas9-PDIA3 system. The proliferation, migration, invasion and cell cycle of GC cells were analyzed by cell counting kit-8 assay, wound healing assay, transwell assay and flow cytometry, respectively. Immunodeficient nude mice was used to evaluate the role of PDIA3 in tumor formation. Quantitative PCR and western blot were used for examining gene and protein expressions. RNA sequencing was performed to see the altered gene expression. RESULTS: The expressions of PDIA3 in GC tissues and cells were increased significantly, and its expression was negatively correlated with the three-year survival rate of GC patients. Down-regulation of PDIA3 by siRNA, LOC14 or CRISPR-cas9 significantly inhibited proliferation, invasion and migration of GC cells TMK1 and AGS, with cell cycle arrested at G2/M phase. Meanwhile, decreased PDIA3 significantly inhibited growth of tumor xenograft in vivo. It was found that cyclin G1 (encoded by CCNG1 gene) expression was decreased by downregulation of PDIA3 in GC cells both in vitro and in vivo. In addition, protein levels of other cell cycle related factors including cyclin D1, CDK2, and CDK6 were also significantly decreased. Further study showed that STAT3 was associated with PDIA3-mediated cyclin G1 regulation. CONCLUSION: PDIA3 plays an oncogenic role in GC. Our findings unfolded the functional role of PDIA3 in GC development and highlighted a novel target for cancer therapeutic strategy.


Asunto(s)
Benzotiazoles , Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/patología , Regulación hacia Abajo/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Ratones Desnudos , Ciclina G1/genética , ARN Guía de Sistemas CRISPR-Cas , Proliferación Celular/genética , Línea Celular Tumoral , Ciclo Celular/genética , ARN Interferente Pequeño/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
4.
Cancer Gene Ther ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351139

RESUMEN

RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.

5.
Phytochem Anal ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361458

RESUMEN

INTRODUCTION: Liuweizhiji Gegen-Sangshen (LGS) oral liquid is a Chinese patent medicine that is widely used for the prevention and treatment of alcoholic liver disease in clinical practice. However, the chemical complexity of LGS has not yet been investigated. OBJECTIVE: The aim of this study was to rapidly identify chemical constituents of LGS and establish a quality control method based on fingerprint and quantitative analysis. METHODOLOGY: A comprehensive strategy was used by combining qualitative analysis by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and fingerprint analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). RESULTS: A total of 162 chemical components in LGS, including 91 flavonoids, 31 organic acids, and 20 phenolic compounds, were identified or preliminarily characterized in both positive and negative ion modes based on the UPLC-Q-TOF-MS results. Of these, 37 were confirmed with the reference standards. In fingerprint analysis, 23 peaks were chosen as common peaks and used to evaluate the similarity of different batches of LGS. Subsequently, a rapid quantification method was optimized and validated for the simultaneous determination of multiple chemical markers in LGS. The validated quantitative method was successfully used to analyze different batches of LGS samples. CONCLUSION: The proposed comprehensive strategy combining HPLC-DAD fingerprinting and multi-component quantification demonstrated satisfactory results with high efficiency, accuracy, and reliability. This can be used as a reference for the overall quality consistency evaluation of Chinese patent medicines.

6.
Sci Rep ; 14(1): 2348, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287075

RESUMEN

Acacetin, one of the flavonoid compounds, is a natural product found in various plants, including Silver birch, and Damiana. Previous studies showed that acacetin has anti-cancer effects on many kinds of cancer cells, however, the role of and the mechanisms of actions of acacetin on non-small cell lung cancer (NSCLC) cells is still not fully understood. Herein, we found that, in vitro, acacetin inhibited the proliferation, invasion, and migration of NSCLC cells, A549 and H460, in a dose-dependent manner. Meanwhile, flow cytometry assay results showed that acacetin induced G2/M phase cell cycle arrest, and apoptosis of NSCLC cells. In vivo, acacetin suppressed tumor formation of A549-xenografted nude mice model with no obvious toxicities. Western blotting results showed that the protein levels of cell cycle-related proteins cyclin B1, cyclin D, and anti-apoptotic protein Bcl-2 had decreased, while the apoptosis-related protein Bak had increased both in NSCLC cells and in A549-xenografted tumor tissues. For investigating the molecular mechanism behind the biological effects of acacetin on NSCLC, we found that acacetin induced the expression levels of tumor suppressor p53 both in vitro and in vivo. MicroRNA, miR-34a, the direct target of p53, has been shown anti-NSCLC proliferation effects by suppressing the expression of its target gene programmed death ligand 1 (PD-L1). We found that acacetin upregulated the expression levels of miR-34a, and downregulated the expression levels of PD-L1 of NSCLC cells in vitro and of tumors in vivo. In vitro, knockdown p53 expression by siRNAs reversed the induction effects of acacetin on miR34a expression and abolished the inhibitory activity of acacetin on NSCLC cell proliferation. Furthermore, using agomir and antagomir to overexpress and suppress the expression miR-34a in NSCLC cells was also examined. We found that miR-34a agomir showed similar effects as acacetin on A549 cells, while miR-34a antagomir could partially or completely reverse acacetin's effects on A549 cells. In vivo, intratumor injection of miR-34a antagomir could drastically suppress the anti-tumor formation effects of acacetin in A549-xenografted nude mice. Overall, our results showed that acacetin inhibits cell proliferation and induces cell apoptosis of NSCLC cells by regulating miR-34a.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Flavonas , Neoplasias Pulmonares , MicroARNs , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ratones Desnudos , Antagomirs/farmacología , Línea Celular Tumoral , MicroARNs/metabolismo , Proliferación Celular , Proteínas de Ciclo Celular/metabolismo , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica
7.
Environ Pollut ; 339: 122730, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838314

RESUMEN

Smoking is a serious global health issue. Cigarette smoking contains over 7000 different chemicals. The main harmful components include nicotine, acrolein, aromatic hydrocarbons and heavy metals, which play the key role for cigarette-induced inflammation and carcinogenesis. Growing evidences show that cigarette smoking and its components exert a remarkable impact on regulation of immunity and dysregulated immunity promotes inflammation and cancer. Therefore, this comprehensive and up-to-date review covers four interrelated topics, including cigarette smoking, inflammation, cancer and immune system. The known harmful chemicals from cigarette smoking were summarized. Importantly, we discussed in depth the impact of cigarette smoking on the formation of inflammatory or tumor microenvironment, primarily by affecting immune effector cells, such as macrophages, neutrophils, and T lymphocytes. Furthermore, the main molecular mechanisms by which cigarette smoking induces inflammation and cancer, including changes in epigenetics, DNA damage and others were further summarized. This article will contribute to a better understanding of the impact of cigarette smoking on inducing inflammation and cancer.


Asunto(s)
Fumar Cigarrillos , Neoplasias , Humanos , Fumar Cigarrillos/efectos adversos , Neoplasias/inducido químicamente , Inflamación , Nicotina , Microambiente Tumoral
8.
Mol Biotechnol ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682457

RESUMEN

OBJECTIVE: Emerging evidence indicates that long non-coding RNA (lncRNA) RP11-93B14.5 facilitates tumor progression in variety of malignancies. The present study proposed to study the functional effect of lncRNA RP11-93B14.5 in gastric cancer (GC) as well as the underlying mechanism. METHODS: Bioinformatics analysis was utilized to analyze lncRNA expression in GC tissues. siRNA was used for knockdown of RP11-93B14.5 in GC cells MKN45 and KATO III. The stable knockdown cell lines were constructed by CRISPR-Cas9. Cell counting kit-8 (CCK-8) assay and soft agar colony formation assay were used to analyze GC cell viability. Flow cytometry analysis was performed to analyze the cell cycle distribution of MKN45 and KATO III. RNA sequencing (RNA-seq) was employed to detect differential genes after transfection with siRP11-93B14.5. Quantitative PCR (Q-PCR) was used to examine gene expression in GC cell lines. Western-blot assay was used to measure protein levels. RNA fluorescent in situ hybridization (FISH) was conducted for lncRNA cellular location and expression. RESULTS: Based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, RP11-93B14.5 was upregulated in GC tissue, which was also verified in GC cell lines in comparison to the normal gastric epithelial HFE145 cells. Knockdown of RP11-93B14.5 decreased cell viability and the colony number of MKN45 and KATO III cells, and altered cell cycle distribution in vitro. RNA-seq analysis revealed RP11-93B14.5 may modulate genes expression of S100A2 and TIMP2 in MKN45 and KATO III cells. Mechanistically, RP11-93B14.5 may drive the progression of GC via S100A2 related-PI3K/AKT signaling pathway. CONCLUSIONS: LncRNA RP11-93B14.5 knockdown alleviated the malignant phenotypes of GC cells through regulating PI3K/AKT. Our results provide evidence for the role of lncRNAs in regulating tumor progression.

9.
J Mol Med (Berl) ; 101(11): 1365-1378, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750918

RESUMEN

Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.


Asunto(s)
Inmunosenescencia , Células Madre Mesenquimatosas , Linfocitos T , Senescencia Celular
10.
Biomed Pharmacother ; 166: 115315, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579693

RESUMEN

Polygonum perfoliatum L. is an herbal medicine that has been extensively used in traditional Chinese medicine to treat various health conditions ranging from ancient internal to surgical and gynecological diseases. Numerous studies suggest that P. perfoliatum extract elicits significant anti-tumor, anti-inflammatory, anti-bacterial, and anti-viral effects. Nevertheless, the underlying mechanisms of its anti-liver cancer effects remain poorly understood. Our study suggests that P. perfoliatum stem extract (PPLA) has a favorable safety profile and exhibits a significant anti-liver cancer effect both in vitro and in vivo. We identified that PPLA activates the cGMP-PKG signaling pathway, and key regulatory genes including ADRA1B, PLCB2, PRKG2, CALML4, and GLO1 involved in this activation. Moreover, PPLA modulates the expression of genes responsible for the cell cycle. Additionally, we identified four constituents of PPLA, namely taxifolin, myricetin, eriodictyol, and pinocembrin, that plausibly act via the cGMP-PKG signaling pathway. Both in vitro and in vivo experiments confirmed that PPLA, along with its constituting compounds taxifolin, myricetin, and eriodictyol, exhibit potent anti-cancer activities and hold the promise of being developed into therapeutic agents.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Plantas Medicinales , Polygonum , Humanos , Polygonum/química , Carcinoma Hepatocelular/tratamiento farmacológico , Antiinflamatorios/química , Neoplasias Hepáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
11.
Int J Oncol ; 63(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37539738

RESUMEN

MicroRNAs (miRNAs) are non­coding RNAs (ncRNAs) that can post­transcriptionally suppress targeted genes. Dysregulated miRNAs are associated with a variety of diseases. MiR­181a­5p is a conserved miRNA with the ability to regulate pathological processes, such as angiogenesis, inflammatory response and obesity. Numerous studies have demonstrated that miR­181a­5p exerts regulatory influence on cancer development and progression, acting as an oncomiR or tumor inhibitor in various cancer types by impacting multiple hallmarks of tumor. Generally, miR­181a­5p binds to target RNA sequences with partial complementarity, resulting in suppression of the targeted genes of miR­181a­5p. However, the precise role of miR­181a­5p in cancer remains incompletely understood. The present review aims to provide a comprehensive summary of recent research on miR­181a­5p, focusing on its involvement in different types of cancer and its potential as a diagnostic and prognostic biomarker, as well as its function in chemoresistance.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética
12.
Cell Commun Signal ; 21(1): 190, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537585

RESUMEN

Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.


Asunto(s)
Anoicis , Neoplasias , Humanos , Anoicis/genética , Transducción de Señal , Integrinas , Citoesqueleto , Línea Celular Tumoral
13.
PeerJ ; 11: e15799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547717

RESUMEN

METTL7A is a protein-coding gene expected to be associated with methylation, and its expression disorder is associated with a range of diseases. However, few research have been carried out to explore the relationship between METTL7A and tumor malignant phenotype as well as the involvement potential mechanism. We conducted our research via a combination of silico analysis and molecular biology techniques to investigate the biological function of METTL7A in the progression of cancer. Gene expression and clinical information were extracted from the TCGA database to explore expression variation and prognostic value of METTL7A. In vitro, CCK8, transwell, wound healing and colony formation assays were conducted to explore the biological functions of METT7A in cancer cell. GSEA was performed to explore the signaling pathway involved in METTL7A and validated via western blotting. In conclusion, METTL7A was downregulated in most cancer tissues and its low expression was associated with shorter overall survival. In melanoma, METTL7A downregulation was associated with poorer clinical staging, lower levels of TIL infiltration, higher IC50 levels of chemotherapeutic agents, and poorer immunotherapy outcomes. QPCR results confirm that METTL7A is down-regulated in melanoma cells. Cell function assays showed that METTL7A knockdown promoted proliferation, invasion, migration and clone formation of melanoma cells. Mechanistic studies showed that METTL7A inhibits tumorigenicity through the p53 signaling pathway. Meanwhile, METTL7A is also a potential immune regulatory factor.


Asunto(s)
Melanoma , Metiltransferasas , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Melanoma/genética , Transducción de Señal/genética , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Metiltransferasas/genética
14.
Mol Cell Probes ; 72: 101925, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37567322

RESUMEN

Malignant melanoma is the most lethal form of skin cancer, and its incidence rates are increasing in Europe, America, and Oceania countries. Despite immune checkpoint inhibitors, such as PD-1 inhibitors, have been shown to have significant therapeutic effects on malignant melanoma, many patients are unresponsive to these treatments, even emerged resistance. There is an urgent need to discover novel biomarkers that might distinguish resistant patients from responders. In this study, we used a series of bioinformatics analyses and experimental validation. The GSE65041 was used for differential expression analysis. Kaplan-Meier was used to assess the prognostic value. ESTIMATE, ssGSEA, EPIC, TIMER, quanTiseq and MCPcounter for estimation of immune infiltration in the tumor microenvironment. We eventually identified that CD3ζ was significantly down-regulated in IHC PD-L1(-) melanoma patients. Low level of CD3ζ expression possessed a poor prognosis. CD3ζ low expression population is significantly associated with lower immune infiltration. In vivo experiment, CD3ζ expression was significantly down-regulated in mice melanoma after intradermally injected with B16-F10R cells. Compared to their wildtype counterparts, melanoma resistant mice treated with nivolumab showed significant reductions in tumor volume and weight when adding CD3ζ. In vitro experiment, the addition of CD3ζ increased nivolumab effection on inhibiting B16-F10R cell viability. Our findings indicated that CD3ζ could be a novel predictive biomarker of PD-1 inhibitor resistance in melanoma.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Animales , Humanos , Ratones , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Nivolumab/uso terapéutico , Microambiente Tumoral
15.
J Pharm Anal ; 13(6): 545-562, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37440911

RESUMEN

As a ligand-dependent transcription factor, retinoid-associated orphan receptor γt (RORγt) that controls T helper (Th) 17 cell differentiation and interleukin (IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions. An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production. Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric- or allosteric-binding sites in the ligand-binding domain. Some of small-molecule inhibitors have entered clinical evaluations. Therefore, in current review, the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted. Notably, the recently developed RORγt inhibitors were summarized, with an emphasis on their optimization from lead compounds, efficacy, toxicity, mechanisms of action, and clinical trials. The limitations of current development in this area were also discussed to facilitate future research.

16.
Curr Med Chem ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37469162

RESUMEN

Reactive oxygen species (ROS) are a class of highly reactive oxidizing molecules, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), among others. Moderate levels of ROS play a crucial role in regulating cellular signaling and maintaining cellular functions. However, abnormal ROS levels or persistent oxidative stress can lead to changes in the tumor microenvironment (TME) that favor cancer development. This review provides an overview of ROS generation, structure, and properties, as well as their effects on various components of the TME. Contrary to previous studies, our findings reveal a dual effect of ROS on different components of the TME, whereby ROS can either enhance or inhibit certain factors, ultimately leading to the promotion or suppression of the TME. For example, H2O2 has dual effects on immune cells and non-cellular components within the TME, while O2•- has dual effects on T cells and fibroblasts. Furthermore, each component demonstrates distinct mechanisms of action and ranges of influence. In the final section of the article, we summarize the current clinical applications of ROS in cancer treatment and identify certain limitations associated with existing therapeutic approaches. Therefore, this review aims to provide a comprehensive understanding of ROS, highlighting their dual effects on different components of the TME, and exploring the potential clinical applications that may pave the way for future treatment and prevention strategies.

17.
Chin Herb Med ; 15(2): 181-200, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37265772

RESUMEN

Ulcerative colitis (UC) is one of types of inflammatory bowel disease with high recurrence. Recent studies have highlighted that microbial dysbiosis as well as abnormal gut immunity are crucial factors that initiate a series of inflammatory responses in the UC. Modulating the gut microbiota-intestinal immunity loop has been suggested as one of key strategies for relieving UC. Many Chinese herbal medicines including some of single herb, herbal formulas and the derived constituents have been reported with protective effect against UC through modulating gut microbiome and intestinal immunity. Some clinical trials have shown promising results. This review thus focused on the current knowledge on using Chinese herbal medicines for treating UC from the mechanism aspects of regulating intestinal homeostasis involving microbiota and gut immunity. The existing clinical trials are also summarized.

18.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175774

RESUMEN

Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.


Asunto(s)
Pulpa Dental , Células Madre Mesenquimatosas , Células Madre , Diferenciación Celular , Proliferación Celular , Células Cultivadas
19.
PeerJ ; 11: e15172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37096066

RESUMEN

Melanoma is a common skin tumor that causes a high rate of mortality, especially in Europe, North America and Oceania. Immunosuppressants such as anti-PD-1 have been used in the treatment of malignant melanoma, however, nearly 60% of patients do not respond to these treatments. Sema4D, also called CD100, is expressed in T cells and tumor tissues. Sema4D and its receptor, Plexin-B1, play crucial roles in the process of immune regulation, angiogenesis, and tumor progression. The role of Sema4D in melanoma with anti-PD-1 resistance is poorly understood. Through a combination of molecular biology techniques and in silico analysis, the role of Sema4D in improving anti-PD-L1 sensitivity in melanoma was explored. The results showed that the expression of Sema4D, Plexin-B1 and PD-L1 was significantly increased in B16-F10R cells. Sema4D knockdown synergizes with anti-PD-1 treatment, cell viability, cell invasion and migration were significantly decreased, while the apoptosis was increased, the growth of tumors on the mice was also inhibited. Mechanistically, bioinformatics analysis revealed that Sema4D is involved in the PI3K/AKT signaling pathway; the downregulation of p-PI3K/PI3K and p-AKT/AKT expression were observed in Sema4D knockdown, therefore, nivolumab resistance is related to Sema4D and Sema4D silencing can improve sensitivity to nivolumab via inhibition of the PI3K/AKT signaling pathway.


Asunto(s)
Melanoma Experimental , Semaforinas , Neoplasias Cutáneas , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Nivolumab , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
20.
Sci Rep ; 13(1): 4311, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922519

RESUMEN

B7 family members act as co-stimulatory or co-inhibitory molecules in the adaptive immune system. Thisstudy aimed to investigate the dysregulation, prognostic value and regulatory network of B7 family members in non-small cell lung cancer (NSCLC). Data for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients were extracted from public databases. Patient prognosis was determined by Kaplan-Meier analysis. The downstream signaling pathways of B7 family were identified via GO and KEGG analysis. The key B7 related genes were selected by network, correlation and functional annotation analysis. Most B7 family members were dysregulated in LUAD and LUSC. The expression of B7-1/2/H3 and B7-H5 were significantly associated with overall survival in LUAD and LUSC, respectively. The major pathway affected by B7 family was the EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway. MAPK1, MAPK3 and MAP2K1 were pivotal B7 related genes in both LUAD and LUSC. This study reveals an overall dysregulation of B7 family members in NSCLC and highlights the potential of combination use of tyrosine kinase inhibitors or MEK/ERK inhibitors with B7 member blockade for NSCLC treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón/patología , Carcinoma de Células Escamosas/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...